(1)

Questions are for both separate science and combined science students unless indicated in the question

\sim	_	
()	7	
w		

Frogs are animals that lay their eggs in water. The eggs hatch as tadpoles.

Students investigated the number of tadpoles in a pond for 8 weeks.

This is the method used.

- 1. Collect 10 dm³ of pond water in a bucket.
- 2. Count the number of tadpoles collected.
- 3. Put the tadpoles back into the pond.
- 4. Repeat steps 1 to 3 another three times in different parts of the pond.
- 5. Repeat steps 1 to 4 at intervals for 8 weeks.

(a)	Suggest one improvement to the method.			
		(1)		

The table below shows the results.

Sample	Number of tadpoles in each sample					
Sample number	0 weeks	1 week	2 weeks	3 weeks	5 weeks	8 weeks
1	11	17	8	9	5	0
2	15	11	12	7	0	5
3	23	16	14	10	7	3
4	11	14	16	Х	4	4
Totals	60	58	50	32	16	12

(b)	Value X is the number of tadpoles in sample 4, at 3 weeks.
	Calculate value X.
	Value X =

(c) Complete the figure below to show how the **total** number of tadpoles changed over the 8 weeks.

You should:

- label the x-axis
- use a suitable scale for the x-axis
- plot the data for the total numbers of tadpoles from above table
- draw a line of best fit.

(d) After 0 weeks, no more tadpoles hatched in the pond.

Calculate the percentage of the tadpoles that would still be found in the pond at 4 weeks compared with 0 weeks.

Use information from the figure above.

Percentage of tadpoles found at 4 weeks = %

(3)

(4)

(e)	After 4 weeks many of the tadpoles had died.	
	Suggest two reasons why the tadpoles died.	
	1	
	2	
	(Tota	(2) Il 11 marks)

Q2.

Students estimated the population of buttercup plants growing on a lawn.

The lawn is a rectangle measuring 15 m \times 10 m.

The figure below shows the lawn.

15 m

Key

Buttercup plant

This is the method used.

- 1. Measure the length and width of the lawn.
- 2. Choose five locations to sample.
- 3. Place a 1 m × 1 m square frame at each location.
- 4. Record the number of buttercup plants in each square frame.

(a) Com	plete the	sentences.
----	-------	-----------	------------

Choose answers from the box.

15 cm ru	ıler	30 m tape measure
balance	quadrat	transect
The length and width o	f the lawn should b	e measured
using a		
The 1 m × 1 m square	frame is called a	
How should the studen	ts choose the five I	ocations to sample?
Tick (✓) one box.		
Choose locations at ra	andom.	
Choose locations at th	ne corners of the la	wn.
Choose locations with plants.	lots of buttercup	
Choose locations with	no buttercup plant	s.

The table below shows the results.

Sample number	Number of buttercup plants
1	2
2	7
3	0
4	0
5	1

The students used their results to calculate the p	population of buttercup plants.
--	---------------------------------

(c) Complete the sentences.

Choose answers from the box.

area	mean	median	perimeter	volume	
Multiply the	length of the	lawn by the	width of the la	wn to give the	
lawn's					
Add up the	total number	of buttercup	plants and div	ide by 5 to give)
the		.			
The student was 300.	s calculated t	that the popu	lation of butte	rcup plants on	the lawn
	students use	e the results i	n the table ab	ove to calculate	e the
population?					
How could t	he students i	mprove the a	ccuracy of the	e estimate?	
Tick (✓) one	e box.				
Count and	record more	samples.			
Select loca	tions in the m	niddle of the I	awn.		
Use a squa	ire frame mea	asuring 0.5 m	n × 0.5 m.		

(f)	One abiotic factor that affects the number of buttercup plants on the lawr
	is soil pH.

Give **one** other **abiotic** factor that could affect the number of buttercup plants on the lawn.

Do not refer to soil pH in your answer.	
	(1) (Total 8 marks)

Q3.

Different species in a habitat may depend on each other for food.

Figure 1 shows a food chain.

Figure 1

(a) The grass needs energy to grow.

What is the source of energy for the grass?

(1)

(b) The table below lists different types of feeding relationship.

Feeding relationship	Organism
Secondary consumer	Lynx
Primary consumer	
Producer	
Herbivore	
Carnivore	
Prey	
Predator	

Write the name of **one** organism from **Figure 1** in each box in the table above.

Each organism may be written in one box or in more than one box.

The first box has been completed for you.

(3)

(c) **Figure 2** shows the appearance of the snowshoe hare in the summer and in the winter.

Figure 2
Snowshoe hare in summer

Snowshoe hare in winter

The snowshoe hare has a different fur colour in the summer than in the winter.

Explain how the different fur colour increases the chance of survival of the snowshoe hare.
-

Figure 3 shows how the number of snowshoe hares and the number of lynx varied in one area between 1900 and 1935.

(d) **Figure 3** shows that the number of snowshoe hares and the number of lynx increase and decrease several times.

Suggest **two** reasons why the number of **snowshoe hares** increases.

1	
2	

(e) The number of snowshoe hares increased and decreased four times between 1900 and 1935.

What effect does an **increase** in the number of snowshoe hares have on the number of lynx?

(1)

(2)

19	019.
Us	se information from Figure 3 .
	hen the snowshoe hare eats grass, about 90% of the biomass of the ass is lost.
Gi	ive two ways the biomass is lost. (biology only)
1	
2	

Q4.

Bacteria are one type of organism that cause decay.

(a) Which other type of organism causes decay? (biology only)

Tick (✓) one box.

Fungi

Plants

Viruses

(1)

Students investigated the effect of temperature on the decay of milk.

The decay was caused by bacteria in the milk.

Figure 1 shows the apparatus used.

This is the method used.

- 1. Set up the apparatus as shown in **Figure 1** with the milk at 20 °C.
- 2. Record the pH each day for 7 days.
- 3. Repeat with more samples of milk at 5 °C and at 30 °C.

(a)	vvnat was the dependent variable in the investigation? (biology only)	
	Tick (✓) one box.	
	The pH of the milk	
	The type of milk	
	The volume of the milk	
		(1)
(c)	How could the students keep the milk at 30 °C for 7 days? (biology only)	
	Tick (✓) one box.	
	Put a lid on the beaker.	
	Put the beaker in a water bath.	
	Stir the milk continuously.	
	Wrap cloth around the beaker.	
		(1)
(d)	As the milk decays, the bacteria digest fats in the milk.	
	What type of acid is produced by digestion of fats in the milk?	
	Tick (✓) one box.	
	Amino acid	
	Fatty acid	
	Hydrochloric acid	
		(1)

Figure 2 shows the results.

(e)	Why did the pH not fall below pH 4.5 at 20 °C?
	Tick (✓) one box.

All the fat had been digested.

The reaction was too fast.

The temperature was too low.

(1)

The digestion of fat was fastest at 30 °C and slowest at 5 °C.

(f)	Give one reason why the rate of digestion was faster at 30 °C than at 5 °C

(1)

	(Total 10 m	
	Rate at 30 °C is times faster	(2)
	Use your answer to part (g).	
	How many times faster is the rate of digestion at 30°C than the rate of digestion at 5°C from day 2 to day 3?	
(h)	The rate of digestion at 5°C from day 2 to day 3 is 0.1 pH units/day.	
	Therefore the fall in pH at 30 °C from day 2 to day 3 = pH units/day	(2)
	At 30 °C, the pH at day 3 =	
	At 30 °C, the pH at day 2 =	
	Use data from Figure 2 .	
	Complete the following calculation.	
(g)	Calculate the rate of digestion at 30 °C from day 2 to day 3.	

Q5.

Earthworms:

- live in soil
- feed on dead and decaying plant matter
- have soft, moist skin
- exchange gases through their skin.
- (a) Give **two** abiotic factors and **two** biotic factors that could affect the size of an earthworm population.

Abiotic factors					
1					
2					
Biotic fac	ctors				
1					
2					

(4)

(b)

(6) (Total 10 marks)

	ents investigated the populations of earthworms in the soil in two rent areas:
•	Area A : a grass lawn
•	Area B : a farmer's field.
Che	mical X can be mixed with water and poured onto the soil.
	mixture brings earthworms to the surface of the soil but does not harm earthworms.
	an investigation using chemical ${\bf X}$ to compare the number of hworms per ${\bf m}^2$ in areas ${\bf A}$ and ${\bf B}$.
	·